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Usage and Adaptation of Data Carpentry Materials

Most material found in this document has been adapted from the
Data Carpentry [https://datacarpentry.org/r-socialsci/] materials,
under the creative commons attribution license
[https://creativecommons.org/licenses/by/4.0/]. Minor
amendments have been made to allow for compatability in order.

https://datacarpentry.org/r-socialsci/
https://creativecommons.org/licenses/by/4.0/


Objectives of the session:

I Describe the purpose of an R package and the dplyr package.
I Select certain columns in a dataframe with the dplyr function

select.
I Select certain rows in a dataframe according to filtering

conditions with the dplyr function filter.
I Link the output of one dplyr function to the input of another

function with the ‘pipe’ operator %>%.
I Add new columns to a dataframe that are functions of existing

columns with mutate.
I Use the split-apply-combine concept for data analysis.
I Use summarize, group_by, and count to split a dataframe

into groups of observations, apply a summary statistics for each
group, and then combine the results.



I Describe the concept of a wide and a long table format and for
which purpose those formats are useful.

I Describe the roles of variable names and their associated values
when a table is reshaped.

I Reshape a dataframe from long to wide format and back with
the pivot_wider and pivot_longer commands from the
tidyr package.

I Export a dataframe to a csv file.

Questions to be able to answer:
I How can I select specific rows and/or columns from a

dataframe?
I How can I combine multiple commands into a single command?
I How can I create new columns or remove existing columns

from a dataframe?
I How can I reformat a dataframe to meet my needs?



What is dplyr

dplyr is a package for making tabular data wrangling easier by
using a limited set of functions that can be combined to extract and
summarize insights from your data.

Like readr, dplyr is a part of the tidyverse. These packages were
loaded in R’s memory when we called library(tidyverse) earlier.



Note
The packages in the tidyverse, namely dplyr, tidyr and ggplot2
accept both the British (e.g. summarise) and American
(e.g. summarize) spelling variants of different function and option
names. For this lesson, we utilize the American spellings of different
functions; however, feel free to use the regional variant for where
you are teaching.



Learning dplyr

To make sure everyone will use the same dataset for this lesson,
we’ll read again the SAFI dataset that we downloaded earlier.
library(tidyverse)
interviews <- read_csv("https://raw.githubusercontent.com/datacarpentry/r-socialsci/main/episodes/data/SAFI_clean.csv")



Functions in dplyr

We’re going to learn some of the most common dplyr functions:

I select(): subset columns
I filter(): subset rows on conditions
I mutate(): create new columns by using information from

other columns
I group_by() and summarize(): create summary statistics on

grouped data
I arrange(): sort results
I count(): count discrete values



Selecting columns and filtering rows

To select columns of a dataframe, use select(). The first
argument to this function is the dataframe (interviews), and the
subsequent arguments are the columns to keep, separated by
commas. Alternatively, if you are selecting columns adjacent to each
other, you can use a : to select a range of columns, read as “select
columns from ___ to ___.” You may have done something similar
in the past using subsetting. select() is essentially doing the same
thing as subsetting, using a package (dplyr) instead of R’s base
functions.



Selecting example
# to select columns throughout the dataframe
select(interviews, village, no_membrs, months_lack_food)
# to select a series of connected columns
select(interviews, village:respondent_wall_type)



Filter example

To choose rows based on specific criteria, we can use the filter()
function. The argument after the dataframe is the condition we
want our final dataframe to adhere to (e.g. village name is
Chirodzo):
# filters observations where village name is "Chirodzo"
filter(interviews, village == "Chirodzo")

## # A tibble: 39 x 14
## key_ID village interview_date no_membrs years_liv respondent_wall_type
## <dbl> <chr> <dttm> <dbl> <dbl> <chr>
## 1 8 Chirodzo 2016-11-16 00:00:00 12 70 burntbricks
## 2 9 Chirodzo 2016-11-16 00:00:00 8 6 burntbricks
## 3 10 Chirodzo 2016-12-16 00:00:00 12 23 burntbricks
## 4 34 Chirodzo 2016-11-17 00:00:00 8 18 burntbricks
## 5 35 Chirodzo 2016-11-17 00:00:00 5 45 muddaub
## 6 36 Chirodzo 2016-11-17 00:00:00 6 23 sunbricks
## 7 37 Chirodzo 2016-11-17 00:00:00 3 8 burntbricks
## 8 43 Chirodzo 2016-11-17 00:00:00 7 29 muddaub
## 9 44 Chirodzo 2016-11-17 00:00:00 2 6 muddaub
## 10 45 Chirodzo 2016-11-17 00:00:00 9 7 muddaub
## # i 29 more rows
## # i 8 more variables: rooms <dbl>, memb_assoc <chr>, affect_conflicts <chr>,
## # liv_count <dbl>, items_owned <chr>, no_meals <dbl>, months_lack_food <chr>,
## # instanceID <chr>



Filter example cont.

We can also specify multiple conditions within the filter()
function. We can combine conditions using either “and” or “or”
statements. In an “and” statement, an observation (row) must meet
every criteria to be included in the resulting dataframe. To form
“and” statements within dplyr, we can pass our desired conditions as
arguments in the filter() function, separated by commas:
# filters observations with "and" operator (comma)
# output dataframe satisfies ALL specified conditions
filter(interviews, village == "Chirodzo",

rooms > 1,
no_meals > 2)

## # A tibble: 10 x 14
## key_ID village interview_date no_membrs years_liv respondent_wall_type
## <dbl> <chr> <dttm> <dbl> <dbl> <chr>
## 1 10 Chirodzo 2016-12-16 00:00:00 12 23 burntbricks
## 2 49 Chirodzo 2016-11-16 00:00:00 6 26 burntbricks
## 3 52 Chirodzo 2016-11-16 00:00:00 11 15 burntbricks
## 4 56 Chirodzo 2016-11-16 00:00:00 12 23 burntbricks
## 5 65 Chirodzo 2016-11-16 00:00:00 8 20 burntbricks
## 6 66 Chirodzo 2016-11-16 00:00:00 10 37 burntbricks
## 7 67 Chirodzo 2016-11-16 00:00:00 5 31 burntbricks
## 8 68 Chirodzo 2016-11-16 00:00:00 8 52 burntbricks
## 9 199 Chirodzo 2017-06-04 00:00:00 7 17 burntbricks
## 10 200 Chirodzo 2017-06-04 00:00:00 8 20 burntbricks
## # i 8 more variables: rooms <dbl>, memb_assoc <chr>, affect_conflicts <chr>,
## # liv_count <dbl>, items_owned <chr>, no_meals <dbl>, months_lack_food <chr>,
## # instanceID <chr>



Filter example cont.

We can also form “and” statements with the & operator instead of
commas:
# filters observations with "&" logical operator
# output dataframe satisfies ALL specified conditions
filter(interviews, village == "Chirodzo" &

rooms > 1 &
no_meals > 2)

## # A tibble: 10 x 14
## key_ID village interview_date no_membrs years_liv respondent_wall_type
## <dbl> <chr> <dttm> <dbl> <dbl> <chr>
## 1 10 Chirodzo 2016-12-16 00:00:00 12 23 burntbricks
## 2 49 Chirodzo 2016-11-16 00:00:00 6 26 burntbricks
## 3 52 Chirodzo 2016-11-16 00:00:00 11 15 burntbricks
## 4 56 Chirodzo 2016-11-16 00:00:00 12 23 burntbricks
## 5 65 Chirodzo 2016-11-16 00:00:00 8 20 burntbricks
## 6 66 Chirodzo 2016-11-16 00:00:00 10 37 burntbricks
## 7 67 Chirodzo 2016-11-16 00:00:00 5 31 burntbricks
## 8 68 Chirodzo 2016-11-16 00:00:00 8 52 burntbricks
## 9 199 Chirodzo 2017-06-04 00:00:00 7 17 burntbricks
## 10 200 Chirodzo 2017-06-04 00:00:00 8 20 burntbricks
## # i 8 more variables: rooms <dbl>, memb_assoc <chr>, affect_conflicts <chr>,
## # liv_count <dbl>, items_owned <chr>, no_meals <dbl>, months_lack_food <chr>,
## # instanceID <chr>



Filter example cont.

In an “or” statement, observations must meet at least one of the
specified conditions. To form “or” statements we use the logical
operator for “or,” which is the vertical bar (|):
# filters observations with "|" logical operator
# output dataframe satisfies AT LEAST ONE of the specified conditions
filter(interviews, village == "Chirodzo" | village == "Ruaca")

## # A tibble: 88 x 14
## key_ID village interview_date no_membrs years_liv respondent_wall_type
## <dbl> <chr> <dttm> <dbl> <dbl> <chr>
## 1 8 Chirodzo 2016-11-16 00:00:00 12 70 burntbricks
## 2 9 Chirodzo 2016-11-16 00:00:00 8 6 burntbricks
## 3 10 Chirodzo 2016-12-16 00:00:00 12 23 burntbricks
## 4 23 Ruaca 2016-11-21 00:00:00 10 20 burntbricks
## 5 24 Ruaca 2016-11-21 00:00:00 6 4 burntbricks
## 6 25 Ruaca 2016-11-21 00:00:00 11 6 burntbricks
## 7 26 Ruaca 2016-11-21 00:00:00 3 20 burntbricks
## 8 27 Ruaca 2016-11-21 00:00:00 7 36 burntbricks
## 9 28 Ruaca 2016-11-21 00:00:00 2 2 muddaub
## 10 29 Ruaca 2016-11-21 00:00:00 7 10 burntbricks
## # i 78 more rows
## # i 8 more variables: rooms <dbl>, memb_assoc <chr>, affect_conflicts <chr>,
## # liv_count <dbl>, items_owned <chr>, no_meals <dbl>, months_lack_food <chr>,
## # instanceID <chr>



Multiple steps

What if you want to select and filter at the same time? There are
three ways to do this: use intermediate steps, nested functions, or
pipes.

With intermediate steps, you create a temporary dataframe and use
that as input to the next function, like this:
interviews2 <- filter(interviews, village == "Chirodzo")
interviews_ch <- select(interviews2, village:respondent_wall_type)

This is readable, but can clutter up your workspace with lots of
objects that you have to name individually. With multiple steps,
that can be hard to keep track of.



Nesting

You can also nest functions (i.e. one function inside of another), like
this:
interviews_ch <- select(filter(interviews, village == "Chirodzo"),

village:respondent_wall_type)



Pipes

The last option, pipes ‘%>%’, are a recent addition to R. Pipes let
you take the output of one function and send it directly to the next,
which is useful when you need to do many things to the same
dataset. You can access this pipe function with:

I Ctrl + Shift + M if you have a PC or Cmd + Shift + M if you
have a Mac.

interviews %>%
filter(village == "Chirodzo") %>%
select(village:respondent_wall_type)

## # A tibble: 39 x 5
## village interview_date no_membrs years_liv respondent_wall_type
## <chr> <dttm> <dbl> <dbl> <chr>
## 1 Chirodzo 2016-11-16 00:00:00 12 70 burntbricks
## 2 Chirodzo 2016-11-16 00:00:00 8 6 burntbricks
## 3 Chirodzo 2016-12-16 00:00:00 12 23 burntbricks
## 4 Chirodzo 2016-11-17 00:00:00 8 18 burntbricks
## 5 Chirodzo 2016-11-17 00:00:00 5 45 muddaub
## 6 Chirodzo 2016-11-17 00:00:00 6 23 sunbricks
## 7 Chirodzo 2016-11-17 00:00:00 3 8 burntbricks
## 8 Chirodzo 2016-11-17 00:00:00 7 29 muddaub
## 9 Chirodzo 2016-11-17 00:00:00 2 6 muddaub
## 10 Chirodzo 2016-11-17 00:00:00 9 7 muddaub
## # i 29 more rows



Assigning Alongside Piping

If we want to create a new object with this smaller version of the
data, we can assign it a new name:
interviews_ch <- interviews %>%

filter(village == "Chirodzo") %>%
select(village:respondent_wall_type)



Mutate
Frequently you’ll want to create new columns based on the values in
existing columns, for example to do unit conversions, or to find the
ratio of values in two columns. For this we’ll use mutate().

We might be interested in the ratio of number of household
members to rooms used for sleeping (i.e. avg number of people per
room):
interviews %>%

mutate(people_per_room = no_membrs / rooms)

## # A tibble: 131 x 15
## key_ID village interview_date no_membrs years_liv respondent_wall_type
## <dbl> <chr> <dttm> <dbl> <dbl> <chr>
## 1 1 God 2016-11-17 00:00:00 3 4 muddaub
## 2 2 God 2016-11-17 00:00:00 7 9 muddaub
## 3 3 God 2016-11-17 00:00:00 10 15 burntbricks
## 4 4 God 2016-11-17 00:00:00 7 6 burntbricks
## 5 5 God 2016-11-17 00:00:00 7 40 burntbricks
## 6 6 God 2016-11-17 00:00:00 3 3 muddaub
## 7 7 God 2016-11-17 00:00:00 6 38 muddaub
## 8 8 Chirodzo 2016-11-16 00:00:00 12 70 burntbricks
## 9 9 Chirodzo 2016-11-16 00:00:00 8 6 burntbricks
## 10 10 Chirodzo 2016-12-16 00:00:00 12 23 burntbricks
## # i 121 more rows
## # i 9 more variables: rooms <dbl>, memb_assoc <chr>, affect_conflicts <chr>,
## # liv_count <dbl>, items_owned <chr>, no_meals <dbl>, months_lack_food <chr>,
## # instanceID <chr>, people_per_room <dbl>



Filter and Mutate

We may be interested in investigating whether being a member of
an irrigation association had any effect on the ratio of household
members to rooms. To look at this relationship, we will first remove
data from our dataset where the respondent didn’t answer the
question of whether they were a member of an irrigation association.
These cases are recorded as “NULL” in the dataset.



To remove these cases, we could insert a filter() in the chain:
interviews %>%

filter(!is.na(memb_assoc)) %>%
mutate(people_per_room = no_membrs / rooms)

## # A tibble: 131 x 15
## key_ID village interview_date no_membrs years_liv respondent_wall_type
## <dbl> <chr> <dttm> <dbl> <dbl> <chr>
## 1 1 God 2016-11-17 00:00:00 3 4 muddaub
## 2 2 God 2016-11-17 00:00:00 7 9 muddaub
## 3 3 God 2016-11-17 00:00:00 10 15 burntbricks
## 4 4 God 2016-11-17 00:00:00 7 6 burntbricks
## 5 5 God 2016-11-17 00:00:00 7 40 burntbricks
## 6 6 God 2016-11-17 00:00:00 3 3 muddaub
## 7 7 God 2016-11-17 00:00:00 6 38 muddaub
## 8 8 Chirodzo 2016-11-16 00:00:00 12 70 burntbricks
## 9 9 Chirodzo 2016-11-16 00:00:00 8 6 burntbricks
## 10 10 Chirodzo 2016-12-16 00:00:00 12 23 burntbricks
## # i 121 more rows
## # i 9 more variables: rooms <dbl>, memb_assoc <chr>, affect_conflicts <chr>,
## # liv_count <dbl>, items_owned <chr>, no_meals <dbl>, months_lack_food <chr>,
## # instanceID <chr>, people_per_room <dbl>

The ! symbol negates the result of the is.na() function. Thus, if
is.na() returns a value of TRUE (because the memb_assoc is
missing), the ! symbol negates this and says we only want values of
FALSE, where memb_assoc is not missing.



Split-apply-combine data analysis and the summarize() function

Many data analysis tasks can be approached using the
split-apply-combine paradigm: split the data into groups, apply
some analysis to each group, and then combine the results. dplyr
makes this very easy through the use of the group_by() function.



The summarize() function

group_by() is often used together with summarize(), which
collapses each group into a single-row summary of that group.
group_by() takes as arguments the column names that contain the
categorical variables for which you want to calculate the summary
statistics. So to compute the average household size by village:
interviews %>%

group_by(village) %>%
summarize(mean_no_membrs = mean(no_membrs))

## # A tibble: 3 x 2
## village mean_no_membrs
## <chr> <dbl>
## 1 Chirodzo 7.08
## 2 God 6.86
## 3 Ruaca 7.57



Counting

When working with data, we often want to know the number of
observations found for each factor or combination of factors. For
this task, dplyr provides count(). For example, if we wanted to
count the number of rows of data for each village, we would do:
interviews %>%

count(village)

## # A tibble: 3 x 2
## village n
## <chr> <int>
## 1 Chirodzo 39
## 2 God 43
## 3 Ruaca 49



Reshaping with pivot_wider() and pivot_longer()

There are essentially three rules that define a “tidy” dataset:

1. Each variable has its own column
2. Each observation has its own row
3. Each value must have its own cell



Long and wide data formats

In the interviews data, each row contains the values of variables
associated with each record collected (each interview in the villages),
where it is stated that the key_ID was “added to provide a unique
Id for each observation” and the instance_ID “does this as well
but it is not as convenient to use.”

However, with some inspection, we notice that there are more than
one row in the dataset with the same key_ID (as seen below).
However, the instanceIDs associated with these duplicate
key_IDs are not the same. Thus, we should think of instanceID
as the unique identifier for observations!



interviews %>%
select(key_ID, village, interview_date, instanceID)

## # A tibble: 131 x 4
## key_ID village interview_date instanceID
## <dbl> <chr> <dttm> <chr>
## 1 1 God 2016-11-17 00:00:00 uuid:ec241f2c-0609-46ed-b5e8-fe575f6cefef
## 2 2 God 2016-11-17 00:00:00 uuid:099de9c9-3e5e-427b-8452-26250e840d6e
## 3 3 God 2016-11-17 00:00:00 uuid:193d7daf-9582-409b-bf09-027dd36f9007
## 4 4 God 2016-11-17 00:00:00 uuid:148d1105-778a-4755-aa71-281eadd4a973
## 5 5 God 2016-11-17 00:00:00 uuid:2c867811-9696-4966-9866-f35c3e97d02d
## 6 6 God 2016-11-17 00:00:00 uuid:daa56c91-c8e3-44c3-a663-af6a49a2ca70
## 7 7 God 2016-11-17 00:00:00 uuid:ae20a58d-56f4-43d7-bafa-e7963d850844
## 8 8 Chirodzo 2016-11-16 00:00:00 uuid:d6cee930-7be1-4fd9-88c0-82a08f90fb5a
## 9 9 Chirodzo 2016-11-16 00:00:00 uuid:846103d2-b1db-4055-b502-9cd510bb7b37
## 10 10 Chirodzo 2016-12-16 00:00:00 uuid:8f4e49bc-da81-4356-ae34-e0d794a23721
## # i 121 more rows



As seen in the code below, for each interview date in each village no
instanceIDs are the same. Thus, this format is what is called a
“long” data format, where each observation occupies only one row in
the dataframe.
interviews %>%

filter(village == "Chirodzo") %>%
select(key_ID, village, interview_date, instanceID) %>%
sample_n(size = 10)

## # A tibble: 10 x 4
## key_ID village interview_date instanceID
## <dbl> <chr> <dttm> <chr>
## 1 35 Chirodzo 2016-11-17 00:00:00 uuid:ff7496e7-984a-47d3-a8a1-13618b5683ce
## 2 48 Chirodzo 2016-11-16 00:00:00 uuid:e180899c-7614-49eb-a97c-40ed013a38a2
## 3 46 Chirodzo 2016-11-17 00:00:00 uuid:35f297e0-aa5d-4149-9b7b-4965004cfc37
## 4 10 Chirodzo 2016-12-16 00:00:00 uuid:8f4e49bc-da81-4356-ae34-e0d794a23721
## 5 56 Chirodzo 2016-11-16 00:00:00 uuid:973c4ac6-f887-48e7-aeaf-4476f2cfab76
## 6 8 Chirodzo 2016-11-16 00:00:00 uuid:d6cee930-7be1-4fd9-88c0-82a08f90fb5a
## 7 59 Chirodzo 2016-11-16 00:00:00 uuid:1936db62-5732-45dc-98ff-9b3ac7a22518
## 8 62 Chirodzo 2016-11-16 00:00:00 uuid:c6597ecc-cc2a-4c35-a6dc-e62c71b345d6
## 9 53 Chirodzo 2016-11-16 00:00:00 uuid:cc7f75c5-d13e-43f3-97e5-4f4c03cb4b12
## 10 47 Chirodzo 2016-11-17 00:00:00 uuid:2d0b1936-4f82-4ec3-a3b5-7c3c8cd6cc2b



We notice that the layout or format of the interviews data is in a
format that adheres to rules 1-3, where

I each column is a variable
I each row is an observation
I each value has its own cell

This is called a “long” data format. But, we notice that each
column represents a different variable. In the “longest” data format
there would only be three columns, one for the id variable, one for
the observed variable, and one for the observed value (of that
variable). This data format is quite unsightly and difficult to work
with, so you will rarely see it in use.



Questions which warrant different data formats

In interviews, each row contains the values of variables associated
with each record (the unit), values such as the village of the
respondent, the number of household members, or the type of wall
their house had. This format allows for us to make comparisons
across individual surveys, but what if we wanted to look at
differences in households grouped by different types of housing
construction materials?

To facilitate this comparison we would need to create a new table
where each row (the unit) was comprised of values of variables
associated with housing material (e.g. the
respondent_wall_type). In practical terms this means the values
of the wall construction materials in respondent_wall_type
(e.g. muddaub, burntbricks, cement, sunbricks) would become the
names of column variables and the cells would contain values of
TRUE or FALSE, for whether that house had a wall made of that
material.



Exporting data

Now that you have learned how to use dplyr and tidyr to wrangle
your raw data, you may want to export these new data sets to share
them with your collaborators or for archival purposes.

Similar to the read_csv() function used for reading CSV files into
R, there is a write_csv() function that generates CSV files from
dataframes.



Before using write_csv(), we are going to create a new folder,
data_output, in our working directory that will store this
generated dataset. We don’t want to write generated datasets in
the same directory as our raw data. It’s good practice to keep them
separate. The data folder should only contain the raw, unaltered
data, and should be left alone to make sure we don’t delete or
modify it. In contrast, our script will generate the contents of the
data_output directory, so even if the files it contains are deleted,
we can always re-generate them.


