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Usage and Adaptation of Data Carpentry Materials

Most material found in this document has been adapted from the
Data Carpentry [https://datacarpentry.org/r-socialsci/] materials,
under the creative commons attribution license
[https://creativecommons.org/licenses/by/4.0/]. Minor
amendments have been made to allow for compatability in order.

https://datacarpentry.org/r-socialsci/
https://creativecommons.org/licenses/by/4.0/


Objectives of the session:

I Load external data from a .csv file into a data frame.
I Summarise the contents of a data frame.
I Describe the difference between a factor and a string.
I Convert between strings and factors.
I Examine and change date formats.



Questions to be able to answer:

I What is a data.frame?
I How can I read a complete csv file into R?
I How can I get basic summary information about my dataset?
I How can I change the way R treats strings in my dataset?
I Why would I want strings to be treated differently?
I How are dates represented in R and how can I change the

format?



What are data frames and tibbles?

Data frames are the de facto data structure for tabular data in R,
and what we use for data processing, statistics, and plotting.

A data frame is the representation of data in the format of a table
where the columns are vectors that all have the same length. Data
frames are analogous to the more familiar spreadsheet in programs
such as Excel, with one key difference. Because columns are vectors,
each column must contain a single type of data (e.g., characters,
integers, factors). For example, here is a figure depicting a data
frame comprising a numeric, a character, and a logical vector.



Data Frame Reading

Data frames can be created by hand, but most commonly they are
generated by the functions read_csv() or read_table(); in other
words, when importing spreadsheets from your hard drive (or the
web).



Presentation of the SAFI Data

SAFI (Studying African Farmer-Led Irrigation) is a study looking at
farming and irrigation methods in Tanzania and Mozambique. The
survey data was collected through interviews conducted between
November 2016 and June 2017. For this lesson, we will be using a
subset of the available data. For information about the full teaching
dataset used in other lessons in this workshop, see the dataset
description
(https://www.datacarpentry.org/socialsci-workshop/data/).

https://www.datacarpentry.org/socialsci-workshop/data/


Importing data

You are going to load the data in R’s memory using the function
read_csv() from the readr package, which is part of the
tidyverse; learn more about the tidyverse collection of
packages here. readr gets installed as part as the tidyverse
installation. When you load the tidyverse
(library(tidyverse)), the core packages (the packages used in
most data analyses) get loaded, including readr.

https://www.tidyverse.org/


An Import Example
library(tidyverse)

## -- Attaching core tidyverse packages ------------------------ tidyverse 2.0.0 --
## v dplyr 1.1.3 v readr 2.1.4
## v forcats 1.0.0 v stringr 1.5.0
## v ggplot2 3.4.3 v tibble 3.2.1
## v lubridate 1.9.2 v tidyr 1.3.0
## v purrr 1.0.2
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
## i Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
interviews <- read_csv("https://raw.githubusercontent.com/datacarpentry/r-socialsci/main/episodes/data/SAFI_clean.csv")

## Rows: 131 Columns: 14
## -- Column specification --------------------------------------------------------
## Delimiter: ","
## chr (7): village, respondent_wall_type, memb_assoc, affect_conflicts, items...
## dbl (6): key_ID, no_membrs, years_liv, rooms, liv_count, no_meals
## dttm (1): interview_date
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
interviews

## # A tibble: 131 x 14
## key_ID village interview_date no_membrs years_liv respondent_wall_type
## <dbl> <chr> <dttm> <dbl> <dbl> <chr>
## 1 1 God 2016-11-17 00:00:00 3 4 muddaub
## 2 2 God 2016-11-17 00:00:00 7 9 muddaub
## 3 3 God 2016-11-17 00:00:00 10 15 burntbricks
## 4 4 God 2016-11-17 00:00:00 7 6 burntbricks
## 5 5 God 2016-11-17 00:00:00 7 40 burntbricks
## 6 6 God 2016-11-17 00:00:00 3 3 muddaub
## 7 7 God 2016-11-17 00:00:00 6 38 muddaub
## 8 8 Chirodzo 2016-11-16 00:00:00 12 70 burntbricks
## 9 9 Chirodzo 2016-11-16 00:00:00 8 6 burntbricks
## 10 10 Chirodzo 2016-12-16 00:00:00 12 23 burntbricks
## # i 121 more rows
## # i 8 more variables: rooms <dbl>, memb_assoc <chr>, affect_conflicts <chr>,
## # liv_count <dbl>, items_owned <chr>, no_meals <dbl>, months_lack_food <chr>,
## # instanceID <chr>



Side-note on Conflicts

Before proceeding, however, this is a good opportunity to talk about
conflicts. Certain packages we load can end up introducing function
names that are already in use by pre-loaded R packages. For
instance, when we load the tidyverse package below, we will
introduce two conflicting functions: filter() and lag(). This
happens because filter and lag are already functions used by the
stats package (already pre-loaded in R). What will happen now is
that if we, for example, call the filter() function, R will use the
dplyr::filter() version and not the stats::filter() one.
This happens because, if conflicted, by default R uses the function
from the most recently loaded package. Conflicted functions may
cause you some trouble in the future, so it is important that we are
aware of them so that we can properly handle them, if we want.



Inspecting data frames

When calling a tbl_df object (like interviews here), there is
already a lot of information about our data frame being displayed
such as the number of rows, the number of columns, the names of
the columns, and as we just saw the class of data stored in each
column. However, there are functions to extract this information
from data frames. Here is a non-exhaustive list of some of these
functions. Let’s try them out!



Inspecting functions

Size:

I dim(interviews) - returns a vector with the number of rows
as the first element, and the number of columns as the second
element (the dimensions of the object)

I nrow(interviews) - returns the number of rows
I ncol(interviews) - returns the number of columns

Content:

I head(interviews) - shows the first 6 rows
I tail(interviews) - shows the last 6 rows



Inspecting functions 2
Names:

I names(interviews) - returns the column names (synonym of
colnames() for data.frame objects)

Summary:

I str(interviews) - structure of the object and information
about the class, length and content of each column

I summary(interviews) - summary statistics for each column
I glimpse(interviews) - returns the number of columns and

rows of the tibble, the names and class of each column, and
previews as many values will fit on the screen. Unlike the other
inspecting functions listed above, glimpse() is not a “base R”
function so you need to have the dplyr or tibble packages
loaded to be able to execute it.

Note: most of these functions are “generic.” They can be used on
other types of objects besides data frames or tibbles.



Factors

R has a special data class, called factor, to deal with categorical
data that you may encounter when creating plots or doing statistical
analyses. Factors are very useful and actually contribute to making
R particularly well suited to working with data. So we are going to
spend a little time introducing them.

Factors represent categorical data. They are stored as integers
associated with labels and they can be ordered (ordinal) or
unordered (nominal). Factors create a structured relation between
the different levels (values) of a categorical variable, such as days of
the week or responses to a question in a survey. This can make it
easier to see how one element relates to the other elements in a
column. While factors look (and often behave) like character
vectors, they are actually treated as integer vectors by R. So you
need to be very careful when treating them as strings.



Factor Example

Once created, factors can only contain a pre-defined set of values,
known as levels. By default, R always sorts levels in alphabetical
order. For instance, if you have a factor with 2 levels:
respondent_floor_type <- factor(c("earth", "cement",
"cement", "earth"))



Factor Example Continued

R will assign 1 to the level "cement" and 2 to the level "earth"
(because c comes before e, even though the first element in this
vector is "earth"). You can see this by using the function
levels() and you can find the number of levels using nlevels():
levels(respondent_floor_type)

## [1] "cement" "earth"
nlevels(respondent_floor_type)

## [1] 2



Factors in a Data Set
In the case where our data has encoded a factor variable as a string,
we can instead use the ‘as.factor()’ function to convert it. This is
useful for further data wrangling and visualisation.
memb_assoc <- interviews$memb_assoc
memb_assoc

## [1] "NULL" "yes" "NULL" "NULL" "NULL" "NULL" "no" "yes" "no" "no"
## [11] "NULL" "yes" "no" "NULL" "yes" "NULL" "NULL" "NULL" "NULL" "NULL"
## [21] "no" "NULL" "NULL" "no" "no" "no" "NULL" "no" "yes" "NULL"
## [31] "NULL" "yes" "no" "yes" "yes" "yes" "NULL" "yes" "NULL" "yes"
## [41] "NULL" "no" "no" "NULL" "no" "no" "yes" "NULL" "NULL" "yes"
## [51] "NULL" "no" "yes" "no" "NULL" "yes" "no" "no" "NULL" "no"
## [61] "yes" "NULL" "NULL" "NULL" "no" "yes" "no" "no" "no" "no"
## [71] "yes" "NULL" "no" "yes" "NULL" "NULL" "yes" "no" "no" "yes"
## [81] "no" "no" "yes" "no" "yes" "no" "no" "NULL" "yes" "yes"
## [91] "yes" "yes" "yes" "no" "no" "no" "no" "yes" "no" "no"
## [101] "yes" "yes" "no" "NULL" "no" "no" "NULL" "no" "no" "NULL"
## [111] "no" "NULL" "NULL" "no" "no" "no" "no" "yes" "no" "no"
## [121] "no" "no" "no" "no" "no" "no" "no" "no" "no" "yes"
## [131] "NULL"



As a factor. . .

memb_assoc <- as.factor(memb_assoc)
memb_assoc

## [1] NULL yes NULL NULL NULL NULL no yes no no NULL yes no NULL yes
## [16] NULL NULL NULL NULL NULL no NULL NULL no no no NULL no yes NULL
## [31] NULL yes no yes yes yes NULL yes NULL yes NULL no no NULL no
## [46] no yes NULL NULL yes NULL no yes no NULL yes no no NULL no
## [61] yes NULL NULL NULL no yes no no no no yes NULL no yes NULL
## [76] NULL yes no no yes no no yes no yes no no NULL yes yes
## [91] yes yes yes no no no no yes no no yes yes no NULL no
## [106] no NULL no no NULL no NULL NULL no no no no yes no no
## [121] no no no no no no no no no yes NULL
## Levels: no NULL yes



Formatting Dates

One of the most common issues that new (and experienced!) R
users have is converting date and time information into a variable
that is appropriate and usable during analyses. A best practice for
dealing with date data is to ensure that each component of your
date is available as a separate variable. In our dataset, we have a
column interview_date which contains information about the
year, month, and day that the interview was conducted. Let’s
convert those dates into three separate columns.



Overview of Dates Data

Let’s extract our interview_date column and inspect the
structure:
dates <- interviews$interview_date
str(dates)

## POSIXct[1:131], format: "2016-11-17" "2016-11-17" "2016-11-17" "2016-11-17" "2016-11-17" ...



Splitting This Up

When we imported the data in R, read_csv() recognized that this
column contained date information. We can now use the day(),
month() and year() functions to extract this information from the
date, and create new columns in our data frame to store it:
interviews$day <- day(dates)
interviews$month <- month(dates)
interviews$year <- year(dates)


