
Data Carpentry: From Data Wrangling to Data
Visualisation

The Data Carpentry (amended and delivered by Chris Oldnall)

October 25th 2023

Usage and Adaptation of Data Carpentry Materials

Most material found in this document has been adapted from the
Data Carpentry [https://datacarpentry.org/r-socialsci/] materials,
under the creative commons attribution license
[https://creativecommons.org/licenses/by/4.0/]. Minor
amendments have been made to allow for compatability in order.

https://datacarpentry.org/r-socialsci/
https://creativecommons.org/licenses/by/4.0/

Objectives of the session:

I Navigate the RStudio GUI.
I Install additional packages using R code.
I Assign values to objects in R.
I Solve simple arithmetic operations in R.
I Call functions and use arguments to change their default

options.

Questions to be able to answer:

I How to find your way around RStudio?
I How to install packages?
I What data types are available in R?
I What is an object?
I What arithmetic and logical operators can be used?
I How does R treat missing values?

The
Interpreter

The Language

The Car

The Engine

Programming
Languages

Spoken
Languages

Two Key Similarities:
1. Need for precision
2. Different dialects

Base R

Tidyverse

$ and []

%>%

or

Creating objects in R

You can get output from R simply by typing math in the console:
3 + 5

[1] 8

12 / 7

[1] 1.714286

However, to do useful and interesting things, we need to assign
values to objects. To create an object, we need to give it a name
followed by the assignment operator <-, and the value we want to
give it:
area_hectares <- 1.0

Assignment Operator

<- is the assignment operator. It assigns values on the right to
objects on the left. So, after executing x <- 3, the value of x is 3.
The arrow can be read as 3 goes into x. For historical reasons, you
can also use = for assignments, but not in every context. Because of
the slight differences in syntax, it is good practice to always use <-
for assignments. More generally we prefer the <- syntax over =
because it makes it clear what direction the assignment is operating
(left assignment), and it increases the read-ability of the code.

In RStudio, typing Alt + - (push Alt at the same time as the - key)
will write <- in a single keystroke in a PC, while typing Option + -
(push Option at the same time as the - key) does the same in a
Mac.

https://blog.revolutionanalytics.com/2008/12/use-equals-or-arrow-for-assignment.html

Assigning Values

When assigning a value to an object, R does not print anything.
You can force R to print the value by using parentheses or by typing
the object name:
area_hectares <- 1.0 # doesn't print anything
(area_hectares <- 1.0) # putting parenthesis around the call prints the value of `area_hectares`

[1] 1

area_hectares # and so does typing the name of the object

[1] 1

Assigning Values 2

We can also change an object’s value by assigning it a new one:
area_hectares <- 2.5
2.47 * area_hectares

[1] 6.175

This means that assigning a value to one object does not change
the values of other objects.

Comments

All programming languages allow the programmer to include
comments in their code. Including comments to your code has
many advantages: it helps you explain your reasoning and it forces
you to be tidy. A commented code is also a great tool not only to
your collaborators, but to your future self. Comments are the key to
a reproducible analysis.

To do this in R we use the # character. Anything to the right of the
sign and up to the end of the line is treated as a comment and is
ignored by R. You can start lines with comments or include them
after any code on the line.
area_hectares <- 1.0 # land area in hectares
area_acres <- area_hectares * 2.47 # convert to acres
area_acres # print land area in acres.

[1] 2.47

Comment Keyboard Shortcuts
RStudio makes it easy to comment or uncomment a paragraph:
after selecting the lines you want to comment, press at the same
time on your keyboard Ctrl + Shift + C. If you only want to
comment out one line, you can put the cursor at any location of
that line (i.e. no need to select the whole line), then press Ctrl +
Shift + C.

Functions are “canned scripts” that automate more complicated sets
of commands including operations assignments, etc. Many functions
are predefined, or can be made available by importing R packages
(more on that later). A function usually gets one or more inputs
called arguments. Functions often (but not always) return a value.
A typical example would be the function sqrt(). The input (the
argument) must be a number, and the return value (in fact, the
output) is the square root of that number. Executing a function
(‘running it’) is called calling the function. An example of a function
call is:
b <- sqrt(a)

Function Example 1

b <- sqrt(a)

Here, the value of a is given to the sqrt() function, the sqrt()
function calculates the square root, and returns the value which is
then assigned to the object b. This function is very simple, because
it takes just one argument.

The return ‘value’ of a function need not be numerical (like that of
sqrt()), and it also does not need to be a single item: it can be a
set of things, or even a dataset. We’ll see that when we read data
files into R.

Argument

Arguments can be anything, not only numbers or filenames, but also
other objects. Exactly what each argument means differs per
function, and must be looked up in the documentation (see below).
Some functions take arguments which may either be specified by the
user, or, if left out, take on a default value: these are called options.
Options are typically used to alter the way the function operates,
such as whether it ignores ‘bad values’, or what symbol to use in a
plot. However, if you want something specific, you can specify a
value of your choice which will be used instead of the default.

Function Example 2

round(3.14159)

[1] 3

Here, we’ve called round() with just one argument, 3.14159, and
it has returned the value 3. That’s because the default is to round
to the nearest whole number. If we want more digits we can see
how to do that by getting information about the round function.
We can use args(round) or look at the help for this function using
?round.

Data Types in R: Vectors

A vector is the most common and basic data type in R, and is pretty
much the workhorse of R. A vector is composed by a series of
values, which can be either numbers or characters. We can assign a
series of values to a vector using the c() function. For example we
can create a vector of the number of household members for the
households we’ve interviewed and assign it to a new object
hh_members:
hh_members <- c(3, 7, 10, 6)
hh_members

[1] 3 7 10 6

Vectors Pt. 2

A vector can also contain characters. For example, we can have a
vector of the building material used to construct our interview
respondents’ walls (respondent_wall_type):
respondent_wall_type <- c("muddaub", "burntbricks", "sunbricks")
respondent_wall_type

[1] "muddaub" "burntbricks" "sunbricks"

The quotes around “muddaub”, etc. are essential here. Without the
quotes R will assume there are objects called muddaub,
burntbricks and sunbricks. As these objects don’t exist in R’s
memory, there will be an error message.

Useful Function for Inspection

The function str() provides an overview of the structure of an
object and its elements. It is a useful function when working with
large and complex objects:
str(respondent_wall_type)

chr [1:3] "muddaub" "burntbricks" "sunbricks"

Adding in Elements

You can use the c() function to add other elements to your vector:
possessions <- c("bicycle", "radio", "television")
possessions <- c(possessions, "mobile_phone") # add to the end of the vector
possessions <- c("car", possessions) # add to the beginning of the vector
possessions

[1] "car" "bicycle" "radio" "television" "mobile_phone"

Other Vector Items

An atomic vector is the simplest R data type and is a linear
vector of a single type. Above, we saw 2 of the 6 main atomic
vector types that R uses: "character" and "numeric" (or
"double"). These are the basic building blocks that all R objects
are built from. The other 4 atomic vector types are:

I "logical" for TRUE and FALSE (the boolean data type)
I "integer" for integer numbers (e.g., 2L, the L indicates to R

that it’s an integer)
I "complex" to represent complex numbers with real and

imaginary parts (e.g., 1 + 4i) and that’s all we’re going to say
about them

I "raw" for bitstreams that we won’t discuss further

Missing data

As R was designed to analyze datasets, it includes the concept of
missing data (which is uncommon in other programming languages).
Missing data are represented in vectors as NA.

When doing operations on numbers, most functions will return NA if
the data you are working with include missing values. This feature
makes it harder to overlook the cases where you are dealing with
missing data. You can add the argument na.rm=TRUE to calculate
the result while ignoring the missing values.

Missing Data Example

rooms <- c(2, 1, 1, NA, 7)
mean(rooms)

[1] NA

max(rooms)

[1] NA

mean(rooms, na.rm = TRUE)

[1] 2.75

max(rooms, na.rm = TRUE)

[1] 7

